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Abstract 

 
Fire was one of the most ubiquitous disturbances across the Lake States prior to European 

settlement, however, the historical range of variability in fire regimes of the Lake States is poorly 

understood especially in systems like peatlands which are assumed to be fire infrequent. Fire 

regimes across the Lake States and in peatlands have been reconstructed with methods best 

suited for understanding high-severity fires that burned across large regions of continuous fuels 

while frequent low-severity surface fires have been largely missed. We used a multi-proxy 

approach to reconstruct fire histories among peatlands in the Lake States with lake sediment 

cores, peat cores, and fire-scarred tree samples. We established that different methodologies 

contribute to disparity in historical fire return intervals reported in peatlands and that multi-proxy 

methods are key to fully characterizing historical fire regimes. Fire chronologies were longest for 

peat and lake sediment records (>1000 years) with course temporal resolution (20 to 200 year 

fire periods) and shorter for tree-ring records (>100 years) with fine temporal resolution (year 

and season of single fire event). Mean fire return intervals ranged from 95 to 704 years in the 

lake sediment record, ranged from 324 to 392 years in the peat records, and ranged from 7 to 27 

years in the tree-ring record. Historically, climate synchronized fire events in peatlands with low- 

and moderate-severity fire events detected in the tree-ring record rarely corresponding to severe 

drought conditions. We examined correspondence between data sets of historical fire regimes in 

the Lake States at varying spatial, temporal, and biophysical extents within sites and across large 

landscapes which is essential to providing guidance to managers at relevant scales. While 

prescribed fire has been widely adopted in prairies and savannas throughout the Lake States, its 

use in other ecosystems like peatlands and forests has been minimal in part because of a lack of 

understanding of fire ecology in these systems. Our research supports the use of prescribed fire 

across the Lake States and indicates that prescribed fire could contribute to the persistence of 

ecosystems including poor fens and mixed-pine forests at the landscape scale and fire-dependent 

species like red pine at the stand level. We have provided a better understanding of fire ecology 

in the Lake States generally and peatlands specifically equipping managers and policy makers 

across the region with new information to better restore, conserve, and manage the unique 

ecosystems of the Lake States. Extensive networks that include tree-ring, sediment, and 

historical records establish historical ranges of variability in disturbance regimes within and 

among ecosystems revealing the influence of both local and broad scale drivers on fire regimes. 

Integrating these records with predictive models will provide the best insights to the capacity of 

ecosystems to recover and persist under broad scale, highly variable climate changes. 
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Objectives 

 
We used a multi-proxy approach to reconstruct forested peatland fires comparing tree-ring based 

reconstructions to radiocarbon dating of char within peat and lake sediment cores to calibrate 

evidence of local fires and distinguish local signals from background char accumulation (e.g., 

what is a “big fire year”?). This work contributed to foundational understanding of fire history, 

fire effects, fuels management and fire behavior in forested peatlands directly, and the Lake 

States generally, to better understand relative impacts of prescribed fire versus wildfire. A hands-

off approach to management in forested peatlands has largely rested on untested assumptions. 

We collected data that calibrated paleo (sediment-char) and tree-ring fire data both temporally 

and spatially, providing benchmarks useful to management. Our data is instrumental for wildfire 

risk assessments, locally and regionally. It was hypothesized previously that peat fires were 

historically infrequent and connected to extreme conditions (drought and severe fires). Our 

objectives were to (1) develop regional fire history, including peatlands, by adding lake sediment 

and peat core analysis to a comparison of detailed fire reconstruction methods and (2) identify 

climate-fire interactions across spatial and temporal scales. 

 
Fig. 1 Locations of peatland sample sites across the Lake States (inset) in North America with 

the true boreal and hemiboreal subzones (see Brandt 2009) differentiated. 
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Background 

 
The Lakes States contain >14 million acres of peatlands and have recently experienced some of 

the highest rates of decline in the US (Dahl 2011). Peatlands are notoriously difficult to 

regenerate and aside from limited harvest and fire suppression activities management has largely 

been hands off. In addition, fires in forested peatlands are some of the most problematic and 

expensive fires. Despite all of this, Lake States land managers have little and often contradictory 

information about the ecology and silviculture of these systems. 

 

Significant land use changes after European settlement resulted in homogenization of landscapes 

across the Lake States (Frelich 1995; Schulte et al. 2007; Goring et al. 2016) and without 

historical context it is unknown how projected climate change and climate variability will 

influence the severity and frequency of disturbances across the Lake States (Pryor 2013; 

Sturrock et al. 2011; Easterling et al. 2017). Ecosystem resilience, or the capacity of an 

ecosystem to recover after disturbance, is maintained over centuries as adaptations develop under 

disturbance regimes and resilience erodes when disturbance regimes are outside of the historical 

range of variability (Johnstone et al. 2016). Disturbance regime characteristics (e.g., frequency, 

extent, severity) in conjunction with climate, topography, vegetative structure, and species 

composition, contribute to highly complex and regionally variable disturbance regimes (Wein et 

al. 1983, Zoltai et al. 1998).  

 

Fire was one of the most ubiquitous disturbances across the Lake States prior to European 

settlement (Whitney 1986, Schulte and Mladenoff 2005). However, due to a paucity of data 

related to historical fire regimes, the historical range of variability in fire regimes among diverse 

ecosystems of the Lake States is poorly understood (Heinselman 1963, 1973, Bergeron et al. 

2004a). Fire regimes across Lake States have generally been reconstructed with sediment records 

(Booth and Jackson 2003, Booth et al. 2004) or settlement surveyor data (Whitney 1986, Cleland 

et al. 2004, Schulte and Mladenoff 2005). These methods are best suited for understanding high-

severity fires that burned across large regions of continuous fuels (Cyr et al. 2007, Kelly et al. 

2013). Dendrochronology approaches can reconstruct frequent low-severity surface fires that are 

largely missed in sediment charcoal records and settlement surveyor data (Higuera et al. 2011, 

Remy et al. 2018). Reconstructing historical disturbance regimes across multiple spatial scales, 

among diverse ecosystems, and over continuous temporal records provides the best evidence of 

historical ranges in variability (Schulte and Mladenoff 2005; Falk et al. 2011; Swetnam et al. 

2016).  

 

In the Lake States, the concept of fire rotation more than any other metric has been used to 

define fire regimes (Van Wagner 1978, Cleland et al. 2004, Schulte and Mladenoff 2005). 

Johnson and Gutsell (1994) asserted that the use of fire rotation intervals is the only statistically 

valid method of reconstructing fire events because it accounts for spatial and temporal 

variability. Rotation intervals have mostly been applied at landscape scales using historical age 

distribution data and/or notes from Euro-settlement era surveyor data (Cleland 2004). However, 

these methods cannot capture low-severity fires that were historically much more common, and 

widespread, than commonly presumed (Drobyshev et al. 2008, Meunier et al. 2019 a,b). 

Moreover, species like tamarack and red pine have been shown to decline where stand-replacing 

fires dominated (Bergeron and Brisson 1990), also suggesting life history strategies of species 
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across the Lake States include adaptations to low-severity fires (Drobyshev et al. 2008). 

 

Paleo methods (e.g. charcoal analysis via sediments) often cover long-temporal scales and are 

regionally relevant but are not easily interpreted in a localized management scale or context 

(Remy 2018). It is increasingly recognized that charcoal signals for recent periods (<300 years) 

must be compared with historical or tree-ring methods to refine peak detection and evaluate 

reconstruction accuracy (Higuera et al. 2011, Brossier et al. 2014). Detecting and quantifying 

variability in fire regimes that include frequent low-severity fire and infrequent, high-severity 

fire is prerequisite to identifying ecological consequences of altered fire regimes (McLauchlan et 

al. 2020) and is possible through multi-proxy approaches that incorporate both tree-ring records 

and charcoal records.  

 

Peatlands, perhaps more than any other ecosystems in the Lake States, are depauperate in 

historical information necessary for their management and conservation. Changes in 

composition, structure, and function of these ecosystems because of changes in fire regimes have 

received little attention from managers and researchers, yet the magnitude of changes may be 

unrivaled (Cleland et al. 2004). Afforestation may be causing peat fires to be more severe as 

increased tree size and abundance with lack of fire changes hydrology making the system more 

prone to drying which could result in deeper burning and more severe fires (Wilkinson et al. 

2018). The need to Identify opportunities to jointly reduce fuel loadings on federal lands and 

safely reintroduce wildland fire is, and will likely remain, a priority (Barnett et al. 2016). In 

order to understand such changes, we need to understand historical fire conditions and ecology. 

 

Materials and Methods 
Study area 

Our study area consisted of three sites (Haymeadow Flowage in Wisconsin, Upper Lost Lake in 

Michigan, and Betchler Lake in Michigan) across the Lake States characterized as poor fens 

intermixed with dry to dry-mesic forested uplands. Poor fens are weakly minerotrophic, acidic 

peatlands with shallow peat (1–3 meters), continuous saturation of soils from a stable water 

table, and often transition sedge- and rush-dominated northern fens and sphagnum dominated 

bogs (Cohen et al. 2015). Fine-leaved sedges (Carex spp.) and low shrubs including leatherleaf 

(Chamaedaphne calyculata), bog Labrador tea (Ledum groenlandicum), bog birch (Betula 

pumila), and other Ericaceae were prevalent in the peatland vegetation of our sites (Minnesota 

Department of Natural Resources 2003). Sphagnum (Sphagnum spp.) was also abundant with 

variable development of hummock formation. Overstory trees of forested portions of peatlands 

included scattered tamarack (Larix laricina) and black spruce (Picea mariana). Forested uplands 

within and surrounding peatlands were predominantly red pine (Pinus resinosa) with occasional 

white pine (P. strobus), jack pine (P. banksiana), and Populus spp. Understories were sparse, 

dominated by bracken fern (Pteridium aquilinum) and wintergreen (Gaultheria procumbens).  
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Fig. 2 Fire-scarred tree samples (circles) on forested uplands within and surrounding peatlands, 

peat core samples (stars), and lake sediment core samples (diamonds) for (a) Haymeadow 

Flowage, (b) Ramsey Lake, and (c) Betchler Lake. Leaf-off aerial imagery has been overlaid 

with the USGS 3D Elevation Program Bare Earth Dynamic Elevation Model to distinguish 

vegetational and topographical differences used to delineate forested uplands within and 

surrounding peatlands. 

 

Data collection  

From 2018 to 2019, we sampled forested uplands within and surrounding three hemiboreal 

peatlands in the Chequamegon-Nicolet and Hiawatha National Forests from northeastern 

Wisconsin to the eastern end of the upper peninsula of Michigan (Fig. 1) spanning ca. 320 km. 

Forested uplands within peatlands included conifer-dominated islands (uplands with topographic 

relief and surrounded by peatland) and ridges (long, narrow uplands within peatlands; Fig. 2). 

We collected cross sections of fire-scarred tree samples (Fig 3c) with chainsaws primarily from 

remnant red pine – and occasionally white or jack pine – stumps, i.e., trees that were harvested 

during the Lake States cutover period (ca. 1850–1920). We collected lake sediment cores (Fig 

3a) in February 2020 for Lower Betchler Lake and Upper Lost Lake (Fig. 2b, c) using direct 

push piston drive corers. Dr. Dominic Uhelski, Michigan Technological University, collected 

peat cores (Fig. 3b) at the Betchler Lake and Upper Lost Lake sites (Fig. 2b, c) in 2018 using a 

direct push Russian peat borer. 
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Fig. 3 Lake sediment core (a), peat core with layers of macrocharcoal visible (b), and fire-scarred 

tree sample with catface and fires scars visible. 

 

Data analysis 

We used standard dendrochronological techniques to cross-date samples and assign exact 

calendar dates to all fire scars of fire-scarred tree samples (Grissino-Mayer and Swetnam 2000, 

Speer 2010). We used standard methods to prepare and sample lake sediment cores for evidence 

of fire events identified with charcoal (Jensen et al. 2007; Lynch et al. 2011, 2014). We sampled 

cores at 0.5 cm increments, sieved these contiguous increments to pull out charcoal larger than 

125-microns, and examined charcoal pieces at each increment under a dissecting microscope to 

count total number of pieces and assign morphotypes (Fig. 8; Kaplon 2021). We used 

radiocarbon dating and Lead-210 dating to reconstruct age-depth models for lake sediment cores. 

Age-depth models were reconstructed using the rbacon package v.2.5.3 in R v.4.0.4 (Blaauw and 

Christen 2011) and used a Bayesian Markov Chain-Monte Carlo simulation framework with a 

prior assumption of stratigraphic superposition and the IntCal20 calibration curve for conversion 

of radiocarbon ages to calendar years (Reimer et al. 2020). Michigan Technological University 

collaborators prepared and analyzed peat strata to determine frequency of fire events using 

charcoal through multiple methods (Plante et al. 2009, Kane et al. 2010; Miesel et al. 2012; 

Uheslki 2021). 
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We conducted multi-proxy analysis (tree-rings, peat sediments, lake sediments) for 

reconstructing fire regimes for peatland sites at a multitude of spatial and temporal scales. We 

compared length of chronologies, number of fire events detected, and mean fire return intervals 

among fire-scarred tree samples, peat core samples, and lake sediment core samples. We 

identified fire events and estimated mean fire return intervals in the tree-ring record by filtering 

to identify synchronous, and more widespread, fire years. Level of filtering provides evidence of 

more widespread fires by selecting only fire events that are recorded by multiple samples at a 

study site (Farris et al. 2010, 2013, Meunier and Shea 2020). We assumed that synchronous fire 

years on multiple forested uplands (within and surrounding peatland sites) were indicative of 

widespread fire events that burned across peatland landscapes and contributed to fire events 

detected in the lake sediment and peat cores.  

 

We analyzed fire events in lake sediment cores by identifying peaks in charcoal accumulation 

rates outside of baseline levels of charcoal accumulation that result from continuous washing in 

of sediments into lake basins. We applied a locally weighted (LOESS) smoothing model to 

charcoal accumulation rates using a 500-year moving window to identify peak charcoal 

accumulation rates (Higuera et al. 2010). A value of 0.5 was chosen to represent the threshold at 

which the difference between the observed charcoal accumulation rate and the background 

charcoal accumulation rate (locally weighted smoothing model) would be large enough to be 

considered a peak. Peaks in charcoal accumulation rates can occur from changes in both fire 

regime (e.g. increased burning and more intense fires result in more charcoal) and changes in 

rates of charcoal deposition into lakes (Marlon et al. 2006; Higuera et al. 2007). Fourier-

transform infra-red spectrometry was used to detect charcoal in peat soils and corresponded to 

fire events within the peat core (Uhelski 2021). It is important to note that tree-ring record detect 

individual fire years that correspond to fire events while lake sediment and peat records detect 

fire periods where multiple fires could occur in what is identified as a single fire event in the 

record. 

 

We evaluated climate-fire relationships by superimposing fire years determined from tree-ring 

samples on a regional drought reconstruction and with superposed epoch analyses in the burnr 

package in R version 4.0.2 to compare regional interannual drought with the aggregated fire 

years from successive filtering (Grissino Mayer and Swetnam 2000, Cook et al. 2007). We 

averaged summer (June–August) Palmer Drought Severity Index (PDSI) for six PDSI grid points 

(206, 207, 215, 216, 224, 225) across Wisconsin and Michigan to reconstruct regional drought 

patterns during the period 1650–1950 when there was the most temporal overlap among tree-ring 

records (Cook et al. 2007, Falk et al. 2011). We analyzed climate-fire relationships for more 

widespread fire events that would be detected in the lake sediment and peat cores. We plotted 

fire years on averaged PDSI time series from 1650–1950 to evaluate climate-fire conditions 

(Palmer 1965). We also used superposed epoch analysis to compare climate conditions (averaged 

PDSI) in fire event years, and conditions prior to and following fire years, to randomly selected 

years from 1650–1950. We used 1000 non-parametric simulations for bootstrapped confidence 

intervals to assess statistical significance (p-value < 0.05) of departure from mean annual PDSI 

for fire years, as well as for two years prior to and after fire years (Grissino Mayer and Swetnam 

2000, Malevich et al. 2018).  
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Results and Discussion 
 

We used a multi-proxy approach to reconstruct fire histories among peatlands in the Lake States 

with two lake sediment cores (Fig. 4), 9 peat cores, and 220 fire-scarred tree samples (Fig. 5). 

Fire chronologies (number of years between first and last fire event) were longest for peat and 

lake sediment records (>1000 years) and shorter for tree-ring records (>100 years; Table 1). 

Mean fire return intervals ranged from 95 to 704 years in the lake sediment record, ranged from 

324 to 392 years in the peat records, and ranged from 7 to 27 years in the tree-ring record (Table 

1). Historical fire regimes in peatlands across the Lake States have largely been reconstructed 

using methods designed to capture infrequent high-severity fires (Whitney 1986, Cleland et al. 

2004) resulting in fire regimes characterized by infrequent severe fires that burn thousands of 

hectares (Wein et al. 1983, Zoltai et al. 1998, Kasischke and Turetsky 2006). Our methods 

reconstructed fire regimes at multiple spatial and temporal scales to include frequent low-

severity fire events, which have been largely overlooked in the Lake States (Cleland et al. 2004, 

Booth et al. 2004, Dickmann and Cleland 2005). Mean fire return intervals we determined from 

lake sediment and peat records were comparable to mean fire intervals (100–200 years) reported 

in the literature (Bergeron et al. 2004b, Whitney 1986, Cleland et al. 2004) while mean fire 

return intervals reconstructed with tree-ring records were orders of magnitudes shorter. Our 

results suggest that fire regimes across peatlands in the Lake States were characterized by both 

frequent low-severity fires (detected in tree-ring records) and infrequent high-severity fires 

(detected in lake sediment and peat records). Different methodologies contribute to disparity in 

historical fire return intervals reported in peatlands. 

 

Table 1. Summary of fire histories reconstructed with lake sediment records, peat recordsA, and 

tree-ring records among peatlands of the Lake States. 

  

Site Record type Length of 

chronology 

(years) 

# of 

samples 

# of fire 

eventsB 

Mean fire return 

interval (years) 

Betchler 

Lake 

Lake sediment 4221 1 7 704 

 
Peat 

  

5072 5 21 392 

 
Tree-ring  407 62 77 21       

Upper Lost 

Lake 

Lake sediment 5047 1 54 95 

 
Peat 

  

7537 4 68 324 

 
Tree-ring 295 41 40 27       

Haymeadow 

Flowage 

Tree-ring 159 26 25 7 

A Peat records included in table obtained from Uhelski 2021.  
B The temporal resolution of fire events in lake sediment and peat records ranged from 20 – 200 

and the temporal resolution of fire events in tree-ring records was one year.   
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Fig. 4 Peaks in charcoal accumulation rates over time from lake sediment cores from Betchler 

Lake (a) and Upper Lost Lake (b). The orange line corresponds to a charcoal accumulation rate 

of 0.5 and was chosen to represent the threshold at which the peak indicated a fire period.  

 

Fire years detected in the tree-ring record were synchronous and widspread (Fig. 5) indicating 

fires burned across peatland complexes. At Haymeadow Flowage we detected seven widespread 

fire years: 1845 CE, 1847 CE, 1860 CE, 1866 CE, 1868 CE, 1874 CE, and 1891 CE. At Upper 

Lost Lake we detected nine widespread fire years: 1718 CE, 1733 CE, 1744 CE, 1751 CE, 1754 

CE, 1774 CE, 1847 CE, 1891 CE, and 1932 CE. At Betchler Lake we detected 10 widespread 

fire: 1735 CE, 1755 CE, 1791 CE, 1792 CE, 1861 CE, 1869 CE, 1887 CE, 1900 CE, 1907 CE, 

and 1920 CE. These widespread fire years detected in the tree-ring record corresponded to fire 

periods in lake sediment records (1880 CE – 2018 CE). Peat records did not record any fire 

events during the period that overlapped with the tree-ring record. Synchronous fire events in 

result from widespread fires (Farris et al. 2010) and can be used to understand and compare fire 

events at multiple spatial and temporal scales (Morgan et al. 2001, Meunier and Shea 2020). 

1891 CE, which we detected in the tree-ring record and likely contributed to the fire periods we 

detected in lake sediment records, was a regionally significant fire year recorded by other studies 

across the Lake States (Drobyshev et al. 2008, Muzika et al. 2015, Meunier and Shea 2020). 
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Fig. 5. Fire histories reconstructed with tree-ring records arranged by site. (a) Haymeadow Flowage, (b) Upper Lost Lake, and (c) 

Betchler Lake. Each horizontal line is a sample (remnant stump, standing snag, fallen snag, or living tree), longer black vertical lines 

are recorded fire events, and shorter black lines are pith/bark years. Orange vertical lines highlight years where fire events were 

recorded on more than two forested uplands within and surrounding peatlands representing widespread fire years. Years correspond to 

CE.  
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Fig. 6. Superposed epoch analysis of departure from regional average PDSI across peatlands in 

the Lake States during widespread fire years. Positive PDSI indicate wet conditions and negative 

indicate dry conditions. Dark grey bars indicate a significant departure (p-value < 0.05) from 

average summer PDSI. Solid horizontal lines correspond to 95% confidence interval and dashed 

lines are 99% confidence interval. Fire lag year 0 corresponds to years with fires detected in the 

tree-ring record.  

 

 
Fig. 7. Plotted average summer Palmer Drought Severity Index (PDSI; Cook et al. 2007) with 

fire years superimposed on the PDSI time series. Fire years included years detected among the 

peatland sites for widespread fire events that occurred on more than two forested uplands within 

and surrounding peatlands at each site. Positive PDSI indicate wet conditions and negative 

indicate dry conditions.  
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Somewhat counterintuitively widespread fire events detected by tree-ring records in our study 

sites did not occur during severe drought (Fig. 6) with 64% of widespread fire events 

corresponding to wet and near normal conditions (PDSI ≥ -0.49), 36% of widespread fire events 

corresponding to mild and moderate drought conditions (-2.99 ≤ PDSI ≤ -0.50), and 0% of 

widespread fire years corresponding to severe and extreme drought conditions (PDSI ≤ -3.00).  

However, fire years detected in the tree-ring record among peatland sites were associated with 

significantly (p-value < 0.05) dry conditions across all filters (Fig. 7). The year preceding fire 

years was also associated with significantly (p-value < 0.05) dry conditions. While somewhat 

surprising for peatlands, large fire years in the Lake States more generally have also occurred 

during moderate, but not severe, droughts (Guyette et al. 2016, Meunier and Shea 2020). Local 

and seasonal conditions, not just annual to multi-year regional drought conditions, may be a 

determinant of fire frequency and fire severity in peatlands.  

 

Fire-vegetation-climate interactions in peatlands, specifically in relation to frequent widespread 

low-severity fire events, are strongly influenced by short-term seasonal drying, forest 

composition, and fire ecology of species, but not by severe regional droughts. Climatically 

driven fire regimes characterized by high-severity fire are an important part of peatland 

landscapes in the Lake States (Heinselman 1965, Whitney 1986) and climate reconstructions 

over the temporal extent peat and lake sediment records could likely provide further insights to 

these climate patterns especially at the regional scale. While climate effects are often broad in 

scale, localized influences of plant species and ecosystem processes can also have strong 

influences on fire regime characteristics (Scheller and Mladenoff 2005, Loudermilk et al. 2013, 

Walker et al. 2020). Disparity among drivers of fire dynamics at fine and broad scales across the 

Lake States has relevant implications for peatlands and more widely across the entire region 

(Sedano and Randerson 2014) such that species composition, species diversity, species 

adaptation, climate, and landscape heterogeneity shape fire regimes across spatial and temporal 

scales. This was especially evident in our assessment of morphotypes of charcoal where we 

detected variability in fuel types including both grass species and components of pine species 

including wood, needles, and branches being a large percentage of types of charcoal detected 

during the peaks in the lake sediment records that overlapped with the tree-ring record (Fig. 8).  

 
Science delivery 

We shared our research widely including at state conferences and national conferences including 

the Association for Fire Ecology International Fire Ecology and Management Congress. We 

communicated directly with forest and fire managers in the Chequamegon-Nicolet, Hiawatha, 

and Ottawa National Forests and shared research updates at leadership meetings and the Great 

Lakes Indian Forest and Wildlife Commissions’ Tribal/Forest Service annual meeting. We 

worked closely with ecologists in Wisconsin DNR NHC program and the MNFI who 

incorporated our research to support prescribed fire and managed wildfire use in natural 

communities. We worked with the Lake States Fire Science Consortium to present at their 

Annual Burning Issues Workshop and received a grant to sponsor an undergraduate intern to 

conduct the lake sediment work. We published a portion of this research as an open access article 

in Forest Ecology and Management and are preparing manuscripts for International Journal of 

Wildland Fire and Ecosphere. We are contributing to a North American fire scar project and a 

Lake States Fire History project synthesizing the current state of knowledge of fire history 

throughout North American and the Lake States. 
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Fig. 8 Percent abundance of charcoal morphotypes over time in lake sediment cores from Betchler Lake (a) and Upper Lost Lake (b). 

Photographs of most abundant mophotypes are displayed with a description of vegetation that yields that charcoal morphotype when 

burned in laboratory settings (Jensen et al. 2007; Sutheimer 2007; Kaplon 2021).  
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Conclusions  
 

While the role of fire varies widely around the globe (Zoltai et al. 1998), frequent and 

widespread low-severity fire events play an integral part in the maintenance of many ecosystems 

including reducing encroachment by woody and non-peatland vegetation. This was evident in the 

peatlands we studied with high abundances of fire-adapted plant communities (red and jack pine 

forests) and evidence of frequent and widespread low-severity fire events historically (fire-

scarred trees on forested upland islands within expansive peatlands). Species composition (high 

proportion of fire-adapted species like Pinus resinosa), fuel patterning, and localized drying 

likely maintained historical fire regimes in peatlands and across the Lake States. Local variability 

in fire frequencies is influenced by natural and anthropogenic ignition sources and barriers to fire 

spread (Falk et al. 2011). Altered fire regimes, related to both increasingly severe fires driven by 

climate change and suppression of frequent and widespread low-severity fire, may destabilize 

ecosystems making them more vulnerable to climate change and future disturbances including 

peatlands (Flanagan et al. 2020). Peatlands in the Lake States are among the most vulnerable 

ecosystems under future climate change (Dahl 2011, Angel et al. 2018) and understanding the 

role of fire in relation to resilience over multiple spatial and temporal scales is a necessary first 

step to determine how they will be affected by, and contribute to, a warming world.  

 

We conducted one of the first multi-proxy fire history reconstructions in the Lake States and we 

found that historical disturbance regimes across the Lake States were characterized by frequent, 

low severity, and widespread fires with infrequent, stand-replacing fires. Historically, climate 

synchronized fire events in peatlands with low- and moderate-severity fire events detected in the 

tree-ring record rarely corresponded to severe drought conditions. We addressed an important 

knowledge gap and contributed to a growing base of applicable research that is specific to 

peatlands and contributes more broadly to the region. We examined temporal and spatial 

correspondence between historical fire regimes in a way that approached fire ecology in the Lake 

States at varying spatial, temporal, and biophysical extents within sites and across large 

landscapes. These approaches are essential to providing guidance to managers at relevant scales. 

While prescribed fire has been widely adopted, its use in ecosystems like peatlands and forests 

has been minimal in part because of a lack of understanding of fire ecology. Our research 

supports the use of prescribed low-severity fire across the Lake States and indicates that 

prescribed fire could contribute to the persistence of ecosystems including poor fens and mixed-

pine forests and fire-dependent species like red pine. We have provided a better understanding of 

fire ecology in the Lake States generally and peatlands specifically equipping managers and 

policy makers across the region with new information to better restore, conserve, and manage the 

unique ecosystems of the Lake States. 

 

Investigating the impact of altered disturbance regimes on ecosystem processes and patterns is 

paramount in assessing the vulnerability of diverse ecosystems of the Lake States to continued 

climate change, land use changes, and novel disturbances. Extensive networks that include tree-

ring, sediment, and historical records establish historical ranges of variability in disturbance 

regimes within and among ecosystems revealing the influence of both local and broad scale 

drivers on fire regimes. Integrating these records with predictive models will provide the best 

insights to the capacity of ecosystems to recover and persist under broad scale, highly variable 

climate changes.  
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